
SAMPLING 
 
Introduction 
The focus of the course will be not the instrumentation sites, but the understanding of complex signals, we'll 
see algorithms and techniques to extract information from signals. First of all, we must study how the 
acquisition of data works. 
 

Acquisition of data (or sampling): introduction 
In general, we want to transform the information that we are measuring (like the temperature, for example) 
into a voltage signal because it's easier to carry the signal far apart from where the measurement takes place 
and so it’s easier to collect all the data. Usually, we would like to obtain a linear relationship between the 
physical phenomenon and the output signal. 
Let’s imagine having a plot that represents all the data that 
we have collected as the one depicted in the picture. From 
this plot we can extract some information like, for example, 
the maximum value or the minimum value, but we are not 
able to obtain other parameters like the average due to the 
fact that we have a continues measurement that is not a 
function. In case of a function we would be able to compute 
the average since it is defined as the ratio between the 
integral of the function itself and the intervals: 
 

𝑎𝑣𝑎𝑟𝑎𝑔𝑒 =
∫ 𝑓(𝑡)

𝑇
 

 
So, we have understood that one of the main problems is the fact that we are dealing with a continuous 
measurement and not a function. Another important element to consider is trying to understand how we 
should choose the time interval: this choice is up to us and it depends on what we think is meaningful. 
Depending on how many time intervals we choose we could increase or decrease the resolution1 of our 
measurement that can be defined as the minimum variation in the input that causes a variation of the output, 
in other words it is the minimum variation that causes a variation of the output. Anyway, after choosing the 
time interval we can extract samples data2. With the term “sampling3” we mean understanding what we are 
seeing and reducing the information by extracting what we think is relevant. When we sample, we are losing 
some information. In general, we are losing whatever is in the between of the time interval that we have 
chosen. Since we are dealing with complex phenomena and with fast phenomena, we are going to see a device 
that allow the process in an automatic way; this device is 
the ADC converter. Let’s now try to understand how it 
works.  
 

Acquisition of data (or sampling): how it works 
Let's, now, imagine having a transducer (𝑇) that has two 
wires which are supposed to carry electricity in terms of 
voltage. How can we translate that voltage into a 
number? We can bring the voltage coming from the 
transducer into a component that compares that value 
with a standard one; this component is called SAR 
(Successive Approximation Register). The standard 
voltage used to make the comparison can be obtained 
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thanks to another devise, called voltage generator (𝑉𝑔). Since the voltage generator is able to generate a 

voltage between two number, we usually first generate a voltage in between these two values, then we 
compare this value that has been generated with the value that comes from the transducer: by doing a 
comparison between these two values we can understand if the voltage coming from the transducer is higher 
or lower than the one coming from the voltage generator. By repeating these steps, we end up finding our 
value; generally, the number of comparisons is equal to the number of bits. Of course, we can increase our 
resolution by improving the number of the intervals, or, in other words, by increasing the number of bits. Form 
these considerations we can easily understand that the resolution of our measurements is strictly connected 
to the number of bits of the converter. We’ll see in just a minute the definition of resolution. Anyway, thanks 
to this technique of comparison we can also obtain a code in 0 (if the value that comes from the transducer is 
lower than the generated one) and 1 (if the value that comes from the transducer is higher than the generated 
one) that is easy to send to a computer.  
 
 
 
 
 
 
 
 
 
 
 
Of course, the number that we obtain by applying this technique is usually different form the real one, this 
error, that can be defined as the difference between the real voltage and the output result of our 
measurement is called quantization error and it is at maximum equal to ±𝐿𝑆𝐵/2 (we’ll see that LSB stands for 
Least Significant Bit, for us it is the same of resolution): 
 

𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 = 𝑟𝑒𝑎𝑙 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 − 𝑜𝑢𝑡𝑝𝑢𝑡 𝑟𝑒𝑠𝑢𝑙𝑡 
 
This method of obtaining a voltage output is called, as already mentioned, ADC which stands for Analogue 
Digital Converter. We can foresee how much the resolution is by taking the range of the converter and divided 
it by 2 to the power to the n choice of sampling (2𝑛). The number of choices is the bits and so we could also 
write 2^bits: 

𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝑅𝐸𝑆 =
𝑟𝑎𝑛𝑔𝑒

2𝑛 =
𝑟𝑎𝑛𝑔𝑒

2𝑏𝑖𝑡𝑠  

 

 
Examples: 

• 0 ÷  10: range = 10 

• −10 ÷ +10: range = 20 
 

 
Usually a very good range is 24 bits, but also 16 bits can be considered a good range, too. The last value of the 
one obtained by using this method is called LSB which stands for Least Significant Bit, for us it is the same of 
resolution. So, we call resolution: 

− the number of bits (informatic resolution) 

− the least significant bit (informatic resolution) 

− the definition we have previously provided (electrical resolution) 
In general, when we’ll talk about the electrical resolution, we’ll refer to the definition in volt whereas when 
we’ll say informatic resolution we’ll mean the number of beats or the LSB.  
 
 



Acquisition of data (or sampling): technological issues 
So, until now we have understood what sampling is; as we already seen it can be defined as the process of 
extracting significant data from a population. Then we saw how to transform an electrical signal to a number, 
and we defined this process as ADC. Actually, there are a couple of technological issues that we must cover: 
1. If we should design a converter where would we invest our money on? What is most crucial component 

for an ACD? In term of accuracy the voltage generator is the most critical part. Of course, also the number 
of bits is important, but the voltage generator is the most crucial one. We can define the accuracy of the 
ADC as the difference between two steps as depicted in the picture: 
 
 
 
 
 
 
 
 
 

 
2. The time that is required to convert the signal 

into a number is the second important issue 
that we must cover. In fact, if the conversion 
process is too long, in that time the signal could 
have been changed. So, we need to freeze the 
voltage and then operate a conversion. Let’s 
now try to understand how we can freeze the 
voltage. In this case we can freeze the voltage 
by installing a capacitor which is a device used 
to store electric charge that consists of one pair 
of conductors separated by an insulator. The 
new system will be the one depicted in the 
picture; as we can see we also have two 
switches and the negative wire is connected to 
the ground. Let’s see how it works; when I 
decide to convert the signal, I close the switch 
on the positive wire and keep open the witch 
on the negative wire; thanks to this the 
capacitor accumulates the charges, then I 
switch off the switch on the positive wire so I 
can convert the signal. Due to the fact that 
there is nothing in nature that is able to keep 
the charges constant, the voltage that has been stored into the capacitor starts decreasing but in a slow 
way; of course the speed of decreasing should be slower than the time I need to do all my comparison 
and conversion and so it must be lower than the LSB. In other words, I have to freeze the signal and to do 
this we need to charge a capacitor, at this point the voltage is not coming anymore from the transducer 
but it comes from the capacitor, the capacitor cannot do anything else than losing its charges. By a 
practical point of view, we cannot use a huge or infinite capacitor since I would spend too much time to 
charge and to discharge it, and this is not convenient. When the conversion is over, I have to discharge 
the capacitor and to do this I close the switch on the negative wire so that the capacitor is connected to 
the ground.  

Another important point to keep in mind is that most of the time the users are not interested in seeing the 
measurements expressed in bits or voltage, because they only care of what they are measuring, like the 
temperature, for example.  
 



 
Example: let's imagine having a thermometer with: 

• Sensitivity: 𝑆 = 0,1 𝑉/°𝐶  

• Range: ±10 𝑉 

• Resolution: 12 𝑏𝑖𝑡𝑠 
Let's compute: 

• Electrical resolution: 𝑅𝑒𝑠𝑣 =
10−(−10)

212 = 4,88 𝑚𝑉 

• Resolution in number of levels: 𝑅𝑒𝑠𝑛 = 212 = 4096 

• Resolution in engineering units (it is a link between the sensitivity and the electrical resolution): 
 

𝑅𝑒𝑠𝐸.𝑈 =
𝑅𝑒𝑠𝑣

𝑆
= 4,88 𝑚𝑉 ∙ 0,001

𝑉

°𝐶
=

4,88 𝑚𝑉

100 
𝑚𝑉
°𝐶

 

 

 
Finally let’s highlight that with 16 bits the electrical resolution is in the order of the micro volt whereas with 
24 bits the electrical resolution is in the order of nano-volts. In this case we should use amplifiers because 
otherwise the value measured is not "valid".  
  

Acquisition of data (or sampling): problems 
Let’s now discuss a little bit about the different errors that we can end up with during the measurements if we 
choose the wrong range into the converter and so if we choose wrongly the values on the vertical axis (in the 
next paragraph we’ll discuss the errors that can occur when we act wrongly on the horizontal axis, the time): 

• Problem 1 = if we are measuring an amplitude lower than the LSB we’ll end up having a 0 since the 
converter is not able to catch that signal due to the fact that the range on which we are working on is not 
big enough 
 
 
 
 
 
 
 
 
 
 

• Problem 2: clipping = it is a form of distortion that limits a signal once it exceeds a threshold. Clipping may 
occur when a signal is recorded by a sensor that has constraints on the range of data it can measure. For 
example; if we are dealing with a harmonic signal that goes form −10 to +10 but we are using a range 
of (0, +10), we’ll obtain something like the figure shown since the negative signal is not converted 
because it out of the range of the converter itself 
 
 
 
 
 
 
 
 
 
 

https://en.wikipedia.org/wiki/Distortion
https://en.wikipedia.org/wiki/Signal_(information_theory)
https://en.wikipedia.org/wiki/Sensor


• Problem 3 = it can occur when we use the wrong range in terms of unit of measurements in fact if the 
range is expressed in 𝑉 whereas the signal is in 𝑚𝑉 we could not be able to convert correctly the signal 
itself.  

 
Time of sampling: introduction 
Until now we have studied the conversion only by the amplitude point of view. Let's now discuss about time. 
When do we do the sampling? When do we start sampling and how often we need to do that? The time of 
sampling is crucial because we can introduce strong errors in our sampling. Usually errors are related to fast 
measurements, but they can occur also in slow measurements.  
We can define the time of sampling4 𝑇 as the product between the number of samplings 𝑁 and the time 
interval 𝑑𝑇 or the ratio between the number of samplings 𝑁 and the frequency of sampling 𝑓𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔: 

 

𝑇 = 𝑁 ∙ 𝑑𝑡 =
𝑁

𝑓𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔
 

 

Time of sampling: aliasing 
Let’s now study the following plot and let’s assume that the 
points indicated are at a distance of 1 𝑚𝑠; in this case choosing 
1 𝑚𝑠 as the sampling time is not smart because we would 
extract the same value each sampling; a nice idea would be do 
measure twice per cycle. We can define the sampling frequency 
𝑓𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 as the average number of samples obtained in one 

second (samples per second). The sampling frequency is 
important because if we choose it in a wrong way, we could 
reconstruct a signal that is different for the real one; this 
problem is called aliasing. An example of aliasing is what we can 
see in movies when we see a car that is moving forward 
whereas the wheels seems to move backwords. There is a 
theory that we are going to follow according to which the sampling frequency must be higher than twice the 
signal frequency; this theory is called Shannon theory: 
 

𝑓𝑠𝑎𝑚𝑝𝑙𝑖𝑔 > 2𝑓𝑠𝑖𝑔𝑛𝑎𝑙  

 
The main problem of this theory is that we could not know the frequency of the signal and so it’s like a paradox 
because if we know something, we do not measure it, usually we measure it when we do not know the signal. 
So, how can we solve this paradox or problem? The only way is unfortunately to limit the damage status to 
our measurements; since I cannot know the signal until I have measure it, but if I do not respect this condition 
I do an error, the only thing I can do is removing from the signal all the things that do not depend on this 
relationship. So, to avoid this problem, we usually add an antialiasing device which is an apparatus that 
removes all the component of the signal which have a frequency higher than twice my sampling frequency. 
Since we use it in this specific way, we call it filter. If we study the ratio between the output and input as the 
function of frequency, the filter has a function that can be plotted as the following one: 
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Of course, the higher the frequency of the signal is, the lower is the ratio output/input (the idea is that I choose 
the sampling frequency, the red line; if the frequency of the signal are lower than this value, I keep them, 
otherwise if they are higher, they tend to be zero and so I neglect them). This type of filter is called low-pass 
filter; it can be defined as a filter that passes signals with a frequency lower than a selected cut off frequency 
and attenuates signals with frequencies higher than the cut off frequency. In other words, we are killing all the 
components that do not respect the Shannon theory. Usually I can write: 
 

𝑓𝑎𝑙𝑖𝑎𝑠𝑖𝑛𝑔 = 𝑓𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 − 𝑓𝑠𝑖𝑔𝑛𝑎𝑙  

 

 
Example: let’s assume having a sampling frequency at 1000 𝐻𝑧. In this case the limit, according to Shannon 
theory, would be 500 𝐻𝑧, this frequency is called Nyquist frequency or cut off frequency. I can plot it to 
clarify everything. In the yellow zone of the plot I have frequencies that pass that should not passed and 
frequencies that should have been passed but they didn’t pass.  
  
  
  
  
  
 
  
  
  
  
  
 

 

Usually the cut off happens at 60% of the ratio output/input which is more or less √2/2. But we must be sure 
to not have aliasing and so we take the cut off frequency and multiply it per 2,56. This value comes from the 
point after which the attenuation of the signal is 100dB and so very negligible. The concept is that the filter 
that we choose is characterised by a specific cut off frequency, we know that we are able to sampling correctly 
only signal characterised by the Nyquist frequency (which is equal to half of the sampling frequency), but if 
this frequency is higher than the cut off frequency we for sure not be able to sampling anything and so we’ll 
choose a sampling frequency equal to the double of the cut off frequency. In addition to this to be extremely 
sure to sample correctly we’ll actually choose a sampling frequency equal to 2,56 ∙ 𝑓𝑐𝑢𝑡 𝑜𝑓𝑓.  

[La frequenza ci cut off è propria del filtro che si sceglie: sapendo che il filtro taglia tutto ciò che sta sopra ad 
essa e sapendo che si riesce a campionare correttamente dei segnali che hanno una frequenza minore della 
metà di quella di campionamento (cioè 𝑓𝑁𝑦𝑞𝑢𝑖𝑠𝑡 = 𝑓𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔/2 ), se tutto ciò che sta sopra a 𝑓𝑐𝑢𝑡 𝑜𝑓𝑓 si perde, 

allora si sceglie una 𝑓𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 = 2 ∙ 𝑓𝑐𝑢𝑡 𝑜𝑓𝑓. Poi per stare sicuri, siccome il filtro non è netto, ma ha un gradino 

addolcito, si prende 𝑓𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 = 2,56 ∙ 𝑓𝑐𝑢𝑡 𝑜𝑓𝑓.] 

The only question that we haven’t answered yet is: at which frequency do I keep the signal? I must simply use 
the common sense.  
 

 
 
Exercise: imagine having three signals: a, b and c with 8 bits and with three ranges that can be 
±10𝑉; ±5𝑉; ±25𝑉.  
a. 3 𝑉  @  1000 𝐻𝑧 
b. 6 𝑉  @  2500 𝐻𝑧 
c. 0,01 𝑉  @  100 𝐻𝑧 

 
 

https://en.wikipedia.org/wiki/Filter_(signal_processing)
https://en.wikipedia.org/wiki/Signal_(electrical_engineering)
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Cutoff_frequency
https://en.wikipedia.org/wiki/Attenuate


 
Let’s answer to these questions: 
1) Which range should we choose? The range that we should choose is ±10𝑉 since is the smallest range 

in which the three signals that are given are defined. Of course, we could have chosen also ±25𝑉,but 
by choosing this range we would have decrease the resolution of the measurement. I cannot for sure 
choose the range ±5𝑉 since one signal would not be included (6 𝑉) 

2) Which is the sampling frequency? In order to answer this question, we must analyse the higher signals 
since it would be one easiest to be subjected to aliasing. So, we start from 𝑓𝑠𝑖𝑔𝑛𝑎𝑙 = 2500 𝐻𝑧. From 

this we could decide one value as our cut off frequency 𝑓𝑐𝑢𝑡 𝑜𝑓𝑓 = 2750 𝐻𝑧, for example (every value 

higher than our 𝑓𝑠𝑖𝑔𝑛𝑎𝑙  will be fine, of course we must use the common sense). After computing the 

cut off frequency we can determine the sampling frequency by multiplying it per 2,56:  𝑓𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 =

𝑓𝑐𝑢𝑡 𝑜𝑓𝑓 ∙ 2,56 = 7040 𝐻𝑧.  

 

 
 



FREQUENCY ANALYSIS 
 
Introduction: experimental measurement of the sound 
Let's see a chain of measurements: we have a measurement microphone which is made of a cartridge inside 
which we have a capacitor. The capacitor is made of two armaments: one is fixed whereas the other is a 
membrane that moves as soon as it gets in contact with the sound wave. Basically, this capacitor is able to 
measure the sound pression that arrives to the membrane as a wave. After this device we have the data 
acquisition board; inside this instrument we have both the anti-aliasing filter and the ADC converter. So, at the 
outlet of the anti-aliasing filter we still have analogue signal; only after the ADC we have the digital signal. In 
general, the setup configuration can be depicted as: 
 
 
 
 
 
 
 
 
 
 
 
Of course, the transducer is connected to the data acquisition board thanks to a cable and the data acquisition 
board is usually connect to the computer through a USB link. It’s important to highlight that usually we would 
spend more money on the analogue cable so that we can have a more precise measurement; spending a lot 
of money on the cable that connect the data acquisition board to the computer is useless and worthless.  
As usual, knowing the range and the number of bits of the data acquisition board we can compute the 
resolution in volt. In this particular type of data acquisition board used in class for the experiment we have: 

• 𝑟𝑎𝑛𝑔𝑒: ± 5𝑉 
• 𝑏𝑖𝑡𝑠 = 24 

𝑅𝑒𝑠𝑉 =
10

224 = 0,6𝜇𝑉 

 
Now, knowing that the audible sound range is around 20000 𝐻𝑧 we can choose the sampling frequency as 
50000 𝐻𝑧. After defining the set up and the sampling frequency we can now proceed with the experiment 
and start our measurement. We can leave out1 the values obtained because they are not important; the point 
of everything is that after the measurement we usually would like to try to report what we have seen in the 
plots and to do this the easiest thing to do is reporting the main frequencies that we saw on the plot itself. By 
doing this we are splitting the main signal into different components. This is the base of the frequency analysis.  
 

Frequency analysis 
From now on we are going to study the frequency analysis; this approach helps us to identify the main different 
components of the signal itself. It is based on the idea of splitting the signal into different contributions and 
for each component of the signal we have to report both frequency and amplitude. Usually all this information 
(amplitude and frequency) can be reported in a plot called spectrum; so, the spectrum is a way to represent 
the frequency analysis in term of amplitude and frequency, or, in other words it’s the representation of the 
signal in frequency time. 
How can we do this frequency analysis? What are the techniques and the methodologies that we can use? The 
first methodology that we can think of is the Fourier technique (since we have already studied it in other 
courses) but before this method another technique was developed and used: the band method. Let’s start 
study this first method and then we’ll move onto the Fourier technique.  
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Frequency analysis: band method 
Before Fourier technique was developed, a particular type of filter called band pass filter was used. A band 
pass filter can be defined as a device that passes frequencies within a certain range and rejects frequencies 
outside this range. In general, the band is characterised by two extremes: a low frequency that we can indicate 
with 𝑓𝐿  and a higher frequency indicated with 𝑓𝐻. In the following picture we can wee both the typical shape 
of the plot of a band pass filter and the configuration of the measurement chain system: 
 
 
 
 
 
 
 
 
 

 
Example: referring to the example of the sound we can write the first line of the table for the first band than 
we change the band but keeping constant the bandwidth (𝐴 is the amplitude).  
 
 
 
 
 
 

𝑳 (𝑯𝒛) 𝑯 (𝑯𝒛) 𝑨 
𝟕𝟎𝟎 900 1,7 𝑚𝑉 
𝟗𝟎𝟎 1100 54 𝑚𝑉 

𝟏𝟏𝟎𝟎 1300 99 𝜇𝑉 

   
Of course, the width of the band is a choice up to us. When the number of bands is increasing usually the 
bandwidth is decreasing and vice versa. A common approach of the band analysis is using the octave band.  
Octaves band is a band that had a frequency which is in terms of percentage constant with regards to the 
centre of the band. Usually when we have the centre frequency 𝑓𝑐, we can determine the two extremes by 
computing the following calculation: 

𝑓𝐿 =
√2

2
𝑓𝑐                  𝑓𝐻 = √2𝑓𝑐 = 2𝑓𝐿  

 
Unfortunately, the band method has a major limitation: if we want to study in a precise way the signal, we 
need a lot of bands with extremely small bandwidth and so the computation cost will be extremely high. On 
the other hand, if we are ok with having a small number of bands, they’ll be characterised by a very large 
bandwidth and so the solution obtained will not be precise what so ever.  

 
Frequency analysis: Fourier method 
To overcome the limitation of the band method we can use the Fourier approach. The Fourier theory states 
that each function can be reconstructed or seen as the sum of a sine function. We are not going to see the 
mathematical side of this theory but only the measurement side of it. In general, we can say that every function 
or, in our case, every signal, can be seen as: 
 

𝑆(𝑡) = 𝐴0 + ∑ 𝐴𝑖[sin(𝜔𝑖𝑡) + 𝜑𝑖]

𝑛

𝑖=1

 

 
where 𝜔𝑖𝑡 is related to the frequency of each component of signal, 𝐴𝑖  it’s the corresponding amplitude and 
𝜑𝑖  is the phase. Usually we are going to neglect the phase. The coefficient 𝐴0 indicates how much is the energy 
related to the frequency when 𝜔 = 0, this component is called static component and it can also be identified 
with the term “DC” component. Of course, the Fourier series is defined only for periodic signals. Sometimes 
we can use the Fast Fourier Transform (FFT) despite the simple Fourier transform. This type transform is 



extremely useful since it is already defined in Matlab. We’ll see later on the difference between these two 
transforms.  
 

 
Laboratory: it’s extremely important to remember that in Matlab the “fft” function gives a complex function 
as the output. So, the solution is not normalised at all and so we must work on it. Usually the passages that 
we must follow in order to obtain the correct solution are: 

• Considering only half of the vector otherwise I have double of the real pics. This is simply because in 
Matlab the output of the “fft” is a vector organized in the following way: 

− Even2 numbers:  

DC 𝑓1 𝑓2 𝑓3 𝑓𝑁𝑞  −𝑓1 −𝑓2 −𝑓3 

− Odd3 numbers:  

DC 𝑓1 𝑓2 𝑓3 −𝑓1 −𝑓2 −𝑓3 

 

• To normalise all the value, we must divide the result of the “fft” per the number of samples 𝑁 and then 
multiplying everything per 2 except the DC term and the Nyquist frequency: 
 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 =  
𝑟𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 𝐹𝐹𝑇

𝑁
∙ 2 

 

 
The Fourier transform is of course a very powerful instrument, but it has two strong limitations and therefore 
some common sources of errors. The limitations are: 
1. Issue regard frequency resolution = since it is the sum of the 𝑖 = 1,2,3, … , 𝑛 component and it doesn’t 

take into account also the contribution of other 𝑖 like for example 𝑖 = 1.5, 2.5, 3.5, … I have a limitation 
in the resolution; we have, in fact, a  jump between 𝜔0, 𝜔1 and so on (in general we have 𝜔𝑖 = 𝑖𝜔0). The 
conclusion is that I can measure only frequencies that are entirely inside the period. I have frequency 
representation equal to 1\𝑇.  

 
 
 
 

 
 
 
 
If I need a better frequency resolution ∆𝑓, I need to increase not the sampling frequency but the time 
acquisition. The frequency of sampling 𝑓𝑠 is equal to the number of sampling 𝑛𝑠 divided per the period 𝑇 
and so the link between these two quantities is: 
 

∆𝑓 =
1

𝑇
=

𝑓𝑠

𝑛𝑠
 

 

𝑓𝑠 =
𝑛𝑠

𝑇
= ∆𝑓 ∙ 𝑛𝑠 

 
2. Issue regarding amplitude = the amplitude that Fourier uses it's a number, it's not negotiable value, but 

it’s fixed. So, if the signal is not stationary Fourier ca be applied but it's not a good representation of what 
physically it's happening. 
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Leakage: introduction 
Let’s now try to go in depth on the limitation of the Fourier transform. In order to do this let’s imagine having 
a very plane signal (with plane we mean a clear signal, without noises) characterised by a period 𝑇 and an 
amplitude 𝐴. Let’s compute both the frequency of the signal, as the number of cycles over 𝑇, and the 
resolution frequency ∆𝑓 and let’s depicted in the same plot the output chart that we would obtain by applying 
the Fourier transform versus the real spectrum that we were supposed to have if we could work with all the 
frequencies and not only the discrete ones: 
 
 

𝑓𝑠𝑖𝑔𝑛𝑎𝑙 =
1,5

𝑇
 

 

∆𝑓 =
1

𝑇
 

 
 
 
As we can see from the chart, the output of the Fourier transform is not a continuous graph; the spectrum, in 
fact, is characterised by the presence of some points. If we connect these points, we obtain a broken line and 
not a continuous one. This type of output, which can be considered as a discrete output since it’s not 
continuous, is a consequence of the issue n°1 that we have previously mentioned. So, we can say that Fourier 
transform is not able to reconstruct perfectly the signal. Those points in the spectrum represent how the 
Fourier transform has distributed the energy of the signal in the discrete frequencies that were available.  
Let’s now highlight another aspect: from the plot of the original signal we can evince the fact that the mean 
value is equal to 0 and so, in the spectrum, we were supposed to have at frequency equal to 0 an amplitude, 
and so a value of the energy, equal to 0. But this doesn’t happen in the spectrum that we have plotted in fact 
we have a certain amplitude that corresponds to frequency 0. This occurs since the Fourier transform usually 
compute the integral of the signal over the period and, in this particular example, the integral of the signal is 
not equal to 0 and so, by a mathematical point of view, we’ll have a value of amplitude different from 0. So, 
the Fourier transform lead us having an error in the amplitude value that correspond to the frequency equal 
to 0. Because of this we always must pay attention to the solution provided by the Fourier transform since it 
couldn’t have any meaning by a physical point of view (by a mathematical point of view it is correct, whereas 
by a physical point of view no). Actually, the same thing that we have just notice for the amplitude associated 
to the frequency equal to 0 occurs also for the other amplitudes but in those cases it’s not so easy to compute 
it. This is a consequence of the fact that since we are “shifting” from a continuous signal to a discrete one (and 
so as a consequence of issue n°1), we have that the overall energy of the real signal is split into the spectrum 
in a wrong way. This means that during the reconstruction of the signal, by using the Fourier transform, the 
energy is spread around to preserve the total energy of the signal, since the distribution is discrete. So, what 
we see in the spectrum is an artefact of the calculation, made only to preserve the energy of the signal. This 
phenomenon is called leakage. Let’s now study the cause of this phenomenon. Leakage can occur when not 
every component has a inter period submultiple of the acquired period which can be written as: 
 

𝑇

𝑇𝑠𝑖𝑔𝑛𝑎𝑙
=

𝑓𝑠𝑖𝑔𝑛𝑎𝑙

∆𝑓
= 𝑐 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑛𝑢𝑚𝑏𝑒𝑟 

 
So, leakage can be defined a smearing4 of power across a frequency spectrum that occurs when the signal 
being measured is not periodic in the sample interval. It occurs because discrete sampling results in the 
effective computation of a Fourier series of a waveform having discontinuities, which result in additional 
frequency components.  
Before studying how we could eliminate or, at least reduce the leakage, let’s talk a little bit about one of the 
main consequences of the leakage. As soon as I obtain a spectrum in which we have leakage we for sure have 
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masking. Masking is a phenomenon according to which in a leakaged spectrum we are not able anymore to 
recognize the presence of another sinewave signal or not.   

 
Leakage: solution 
To eliminate this problem, we can think of neglecting the last part of the signal that is the cause of having an 
integral different from zero. By doing this we have some good and same bad things: 

• Good: the mean goes back to 0 

• Bad: we would have the problem of the right-angled corner5 

• Bad: we would have to look at the signal and decide which part of it should be cut and what should be 
kept 

So, we conclude that this method of reducing or eliminate the leakage is not smart, let’s now study something 
better. We can actually attenuate the leakages in two different ways: 
1. Improve the frequency resolution = by improving the resolution we reduce the integral of the extra energy 

over 𝑇. This method, seen in a graphical representation, works perfectly since we are reducing the spacing 
of the frequency and so we are also reducing the spread of energy. Since ∆𝑓 is reducing, we can say that 
when the period tends to infinite the leakage tends to 0. This method of reducing or trying to eliminate 
the leakage is actually not a very good idea since considering a long period the signal can change.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. Windowing = we can think of multiplying the signal per a numerical function which is something like the 
one depicted in the following plot so that we end up with a new signal (by a “mathematical” point of view 
multiplying the signal per a function is like multiplying the array of the signal with an array of numbers 
that I have generated and chosen, depending on the function I’ve chosen). By doing this we actually have 
reduced the energy of the signal (the energy of the signal is underestimated) but we have also reduced 
the problem of leakage.  
 
 
 
 
 
 
 
 
 
 
 
 
The function that I’ve chosen, and I have multiplied is called window. So, we can also define the window 
as a function that is able to removes the extra cycle in an original signal that is the main responsible for 
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leakage. Since they are function, they are defined in time domain, but they can be shifted in the frequency 
domain, too. Let’s try to understand better this point and how is the typical shape of a window’s spectrum 
by looking at the following image: 
 

TIME DOMAIN FREQUENCY DOMAIN 

Original signal 

  

Window 

 
 

Weighted signal 

 
 

 
 
So, the shape of a window’s spectrum is made of a lot of lobes. There is a main lobe which aim is to 
increase the effect of the interested frequency and then there are a lot of side lobes which main effect is 
to decrease the effect of the unexpected frequency.  
There are many kinds of windows. The most common window is called “Hanning window” and it has a 
shape like the one we have just mentioned: 
 
 
 
 
 
 

 
We could also choose a more selective window or a less selective window depending on what we are 
interested in, so: 

• More selective window = I’m more interested in the frequency selectivity (having the right 
frequency) and less interested in the energy of the signal  

• Less selective window = I’m less interested in the frequency selectivity but more interested in the 
energy of the signal  



When we don't want to apply any window, but we are using a software we must select and apply a rectangular 
window that actually doesn’t change the signal whatsoever.  
It’s extremely important to highlight that the windowing technique doesn't help struggling against aliasing; in 
fact, when we use the windowing technique, we are working with an already sampled signal whereas when 
we talk about aliasing, we are working on the acquisition part and aspect. Another important point to keep in 
mind is the fact that if I apply a window to a signal in which leakage doesn’t occur, I’ll end up with a wrong 
spectrum, so applying a window can be done only after checking if there is leakage.  

 

 
Exercise: Let’s imagine having a signal with a lot of components, two of them are known. We must set the 
sampling parameters in order to have a good situation for the analysis. The two components are:  

• 1 𝑉 @ 1000 𝐻𝑧 
• 2 𝑉 @ 999 𝐻𝑧 

First of all we must say what are the main devices that we need to use: we need the transducer, then we 
have to put the anti-aliasing since we don’t know the other components of the signal (if the text would say 
that the signal is made only of this two components we could also avoid putting an anti-aliasing filter), finally 
we have to put the ADC. Now we have to decide the sampling frequency. We can choose the 1200 𝐻𝑧 as 
the cut off frequency. We can then compute the sampling frequency: 
 

𝑓𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 = 2,56 ∙ 𝑓𝑐𝑢𝑡−𝑜𝑓𝑓 = 2,56 ∙ 1200 = 3072 𝐻𝑧 

 
Then we can compute the Nyquist frequency:  
 

𝑓𝑁𝑦𝑞𝑢𝑖𝑠𝑡 =
𝑓𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔

2
= 1536 

 
At this point we can determine the minimum frequency resolution: ∆𝑓𝑚𝑖𝑛 = 1000 − 999 = 1𝐻𝑧 but we 
want to be sure to avoid having leakage and the spreading of energy. I want to see the spectrum goes down 
between the two frequency so that I can be sure that the energy of each frequency is related only to that 
frequency: so, we want a situation similar to the one depicted in the picture and so the frequency resolution 
must be at least equal to  
 

∆𝑓 ≤
1000 − 999

2
= 0,5𝐻𝑧 

 
Thanks to this we can have a good spectrum without misunderstanding. Now we can finally compute the 
period at which I should sampling to avoid leakage (inside the period 𝑇 I must have an inter number of 
cycle): 

𝑇 =
1

∆𝑓
≥ 2 𝑆 

 
 
 
 
 
 
 
 
 
 
 

 

 



Deterministic and non-deterministic components 
Let's imagine that we have to measure the acoustic noise in the classroom, due to the air conditioning system. 
Of course, we need to proceed with a frequency analysis, and we decide to use the FFT to perform it. In the 
room, besides our signal of interest we also have someone which is continuously whistling and someone that 
sometimes claps. We can notice that one of the two extra signals is always present (the whistle) whereas the 
other one is random because it appears and the disappears immediately (the claps). In term of signal process, 
we can divide the components of the signal into 2 big families: 
1. Deterministic components = components which are always present in the signal. In this family we have: 

a. Components that we want to measure 
b. Other components which we don't want to measure, and which are responsible for making our 

measure complex. These deterministic components that we don’t want to measure are called 
disturbances.  

2. Random component (or noises) = these are non-deterministic components that can come directly from 
the physical signal or from the instrumentation that we using to perform our measurement 

So, in our example we have 2 deterministic components: one is our signal of interest and the other one is the 
whistle and then we have one random component which is the clap. Let’s now, first of all, focus our attention 
to the random components. 
 

Averaging methods: introduction 
If we have a complex signal can we reduce the noise in order to improve the accuracy, which is the overall 
quality of my signal's spectrum? In order to reduce the noises and increase the accuracy we can think of take 
different recordings of the same phenomenon and then “took them into account together” thanks to the 
operation of averaging. We could carry out two different common types of averaging. Both of these two 
techniques are based on the idea of doing a several recording with which we feed the digital DFT (digital 
Fourier transform) with each record. Then, we compute a spectrum for each record that we have previously 
done. At the end we’ll have a lot of different spectrum which are in the same number of the recording that we 
have done. Actually, before applying the DFT it’s important to check if the phenomenon is stable or not, in fact 
if it's not stable, we’ll see that doing the average is basically useless. So, once I verify that the phenomenon is 
stable, I can apply the DFT and transform the time domain signal into a spectrum. We can expect that in each 
spectrum we will have some components that are repeated (common components that are the deterministic 
ones) and other ones that appears and disappears (the non-deterministic components).  
 
(*) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Of course, the amplitude of the non-deterministic components will be for sure influenced also by the noises 
and so in the spectrum we are able to read not the real value but the real value plus the noise. So, we’ll never 
be sure about the value of the amplitude of the non-deterministic components since they are influenced by 
the noises and we'll always have noises in our measurements. After obtaining these spectrums we have to do 
the average, let’s now study he two methods that we can use to do the average. 
 

RMS averaging method 
Let's imagine having only 5 components, to make things easier, with only 3 measurements. Of course, the 
average cannot be done in columns since it wouldn't have any meaning; we need to make the average in rows 
and by doing the average in rows we are actually computing the average of the amplitude of each 
measurement at the same frequency. If we write everything in a table, we would end up with something like 
that: 
 

 I measurement II measurement III measurement Average 

Component 𝑪𝟎 𝐴0
𝐼  𝐴0

𝐼𝐼 𝐴0
𝐼𝐼𝐼 𝐴𝑜 

Component 𝑪𝟏 𝐴1
𝐼  𝐴1

𝐼𝐼 𝐴1
𝐼𝐼𝐼 𝐴1 

Component 𝑪𝟐 𝐴2
𝐼  𝐴2

𝐼𝐼 𝐴2
𝐼𝐼𝐼 𝐴2 

Component 𝑪𝟑 𝐴3
𝐼  𝐴3

𝐼𝐼 𝐴3
𝐼𝐼𝐼 𝐴3 

Component 𝑪𝟒 𝐴4
𝐼  𝐴4

𝐼𝐼 𝐴4
𝐼𝐼𝐼 𝐴4 

 
After computing the average, we can now draw the spectrum. So, this spectrum would be made by the average 
of the amplitude recorded previously in each measurement. By doing this we are introducing a more reliable 
evaluation of the measurement for each component and, in addition to this, we are reducing the noises 
components because, for instance, one random component presents in one measurement will not be present, 
or at least will have a smaller amplitude, in another measurement. 
Because of this we obtain a spectrum which is more reliable in term 
of amplitude and also clearer with regard to the noise because we 
have reduced them. A second good effect of using this technique is 
that we are reducing a little bit the leakage and the masking. Only 
if the deterministic components have an average value which is 
lower than the average of the noise, we cannot be able to find that 
component (and so would end up with a new sort of masking).  
Now that we have understood how this works, we would like to 
understand how many records we should take. Of course, the 
higher number, the better will be. In general, the main drawback is 
that we must pay attention to the stability of the signal. The problem is the that sooner or later the signal will 
change and so we must be sure to do the sampling when the signal is stable and it's not changing (we usually 
cannot measure for a lot of time because we are not sure about the stability of the signal).  
Imagine now having a super stable signal and not having problem with storage data, in this particular and 
impossible case if I take an infinite number of measurements, I still cannot eliminate the noises. I would be 
able to not have noises only if all the values would be 0, even with only one value different from zero we'll not 
end up with an average equal to zero.   
How can we improve this technique? How can we draw to zero the 
noise components? Thinking of using a threshold and so deciding 
to neglect all the components smaller than this threshold is not a 
solution because in order to choose a threshold we should know 
the signal and so, in this case, I wouldn't do any measurement. 
Another possible solution would be summing to our original signal 
a second one with the opposite sign. This means having the same 
amplitude but with opposite phase, in this case in fact the average 
would be equal to 0.  



Until now we have done something which is not precise and coherent: we have talked about the average only 
in term of amplitude where we know that the output of the FFT is a complex number. So, until now we have 
completely neglected the complex part. Actually, in order to reduce the noise, is extremely useful to consider 
the all complex number which represent a vector.  

 
 
Laboratory: let’s now try to understand by a more mathematical and informatic point of view what does 
doing the RMS averaging means and how does it work. First of all, we must point out the fact that we start 
with a matrix 𝑦_𝑡𝑜𝑡 which is made of: 

• Rows = each row is an acquisition of the signal, a function of the time 

• Column = each column represents an instant in which the signal is sampled 
This matrix is, of course, a function of the time. Then we must apply the fast Fourier transform and normalise 
it in order to obtain a matrix, that we can call 𝑦_𝑓_𝑡𝑜𝑡, which is a function of the frequency and not of the 
time. So, in this matrix we have that: 

• Rows = each row of this matrix, represents a spectrum 

• Columns = are referring to a specific frequency, after the normalisation the last column will be referring 
to the Nyquist frequency  

The value inside this matrix are complex values and so in order to proceed with the RMS averaging we must 
consider only the amplitude. We then do the average of each column by using the following formula: 
 

𝐴𝑓1
= √

𝐴𝑓1,1

2 + 𝐴𝑓1,2

2 + ⋯ + 𝐴𝑓1,𝑛𝑎𝑣𝑔

2

𝑛𝑎𝑣𝑔
 

 
At the end we’ll have a vector of real values, and each element of the vector is the average of the amplitude 
of a specific frequency: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Vectorial averaging method 
By considering also the complex part, when we do infinite measurements, we can easily obtain the same 
random components with the same amplitude but different phase.  
The key point is that all the reasoning works if and only if the deterministic components have the same phase 
in all the measurement. This method of taking the complex average, also called the vector average, works only 
if the deterministic components are characterised by the same phase, otherwise also them would be equal to 
zero. So, we must be sure that the starting point of the measurement is always in the same point of the physical 
phenomenon.  
 
 
 
 
 
 
 
 
 
 
Now we can conclude that the example that we have done previously (*) is not the perfect since the third 
measurement starts going down and not going up as the other two measurements. So, the idea is that if we 
don’t have a safe phase reference this method is useless or at least doesn’t provide any right conclusion.  
This vectorial average cannot be use for the example of the air conditioning since we don't know the phase 
reference; in this example we should have used the first approach of average.  
 

 
Example: in a reciprocating engine the trigger signal is necessary to have a safe phase reference. The trigger 
is saying to the ADC when it has to start the acquisition. Thanks to this device we are sure that the 
deterministic components are characterised by the same phase. As we have already shown with the air 
conditioning example, we are not always able to have the safe reference phase.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 



 
Laboratory: let’s now try to understand by a more mathematical and informatic point of view what does 
doing the complex averaging means and how does it work. The first part is equal to the RMS method and 
so we are going to start from a matrix which is a function of time, then, thanks to the FFT we obtain a matrix 
of complex number which is a function of frequency. We normalise it and we still have a matrix of complex 
value. Now we simply sum them all and divide it by 𝑛𝑎𝑣𝑔. We’ll end up with a vector contain the complex 

average for each frequency: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Comparison between RMS and complex averaging method 
First of all, let’s highlight once again that when we have a noise, the energy of the signal is randomly distributed 
in all the signal components and so we wouldn’t have a correct value of amplitude. Anyway, we can easily 
notice by the following picture that the complex method reduces the noise much more than the average 
method this because the RMS does the average of all positive value and so we end up with a positive value 
that will always be different from 0; on the other hand since the vectorial method does the average of both 
positive and negative values we could end up with a very small value which can also be equal to 0. The positive 
value that we obtain with the RMS method is called carpet of noise and it’s typical only of this method. So, 
this carpet of noise can never be equal to 0. In addition to this we 
can conclude that: 

• Increasing 𝑛𝑎𝑣𝑔 (which means increasing the number od the 

sampling, the number of the rows) we’ll end up with a more 
precise spectrum 

• Increasing the noise, we’ll effect negatively on the 
measurement since we’ll be less precise 

Let’s also repeat once again another key aspect: it’s extremely 
important to have a reference phase because if we don’t have it, 
we must use the RMS method, otherwise with the complex 
method we’ll have a wrong solution. 



Rotating machines: introduction of synchronous acquisition 
In the chapter on vectorial averaging, we have talked about the importance of having a safe phase reference 
and we have talked about the example of the rotor as an example in which we can usually use this type of 
average. So, the complex average is usually used with rotating machine since it’s easier determine a phase 
reference. Although talking about rotating machines is very specific, it covers a lot of different fields because 
in reality most of the phenomenon are characterised at the back by the presence of a rotated machine.  
Let’s recap a little bit what we have said about the rotating machines: the main point is that the rotating 
phenomenon will be characterised by a period which is a submultiple of the acquisition time 𝑇. Let’s now try 
to understand how we can improve, in a rotating machine, our analysis, with some engineering tricks and 
observation, knowing that the bad aspect of the FFT is that we could have leakage (fake energy that cover the 
spectrum; the second bad aspect is that we need a stable signal).  
 
 
 
 
 
 
 
 
 
By exploiting this property of the rotating machines, we could in some way synchronise the acquisition time 
with the period of the phenomenon; by doing this we could increase the quality of the measurement; let’s try 
to understand why. If it is true that at every cycle the phenomenon begins again, we can change the time 
acquisition and choose, as the acquisition time, the time of the complete revolution of the rotor. If we are able 
to do that, we will know for sure that in our acquisition time 𝑇, we’ll have only an integer number of cycles. 
By doing this we are stating to have a signal which physically satisfy the same condition of the discrete Fourier 
transform and so we don't have leakage at principle. So, by choosing as the acquisition time the period of the 
phenomenon we are avoiding the problem of leakage.  
 

Synchronous acquisition 
The idea described previously has some problems since we don't 
know how long 𝑇 will be and so we don't know how many samples 
we need to take in 𝑇. To solve this problem, instead of taking just one 
point as reference, we could apply a smaller wheel, with a number of 
defined teeth, to the rotor; this wheel rotates with the rotor itself 
and, thanks to a second transducer we will know for sure where and 
when we start a new cycle (as soon as we have passed the total 
number of the teeth of the wheel we know that a new cycle starts).  
So, up to now our ADC was driven by an inside clock whereas in this 
case the start of the converting is no more determined by the internal 
clock, but it comes from the trigger itself. So, what we do here is 
passing from a time domain acquisition to an angular space domain acquisition. We don't acquire anymore 
according to the time, but we are acquiring according to the angular position of the trigger. So, we must change 
the axial dimension of the acquisition from the time 𝑡, to the angles 𝛼. The acquisition time will be swapped 
from 𝑇 to bigger 𝛼 which is written as 𝐴. Of course, also the frequency resolution will change, as the following 
plots state: 
 
 
 
 
 
 
 



The configuration described until now is simply called synchronous acquisition since it goes together with 
cycle. Let’s now try to understand better what the main advantage of this configuration is. With only one 
sensor (phase reference, only) we could still have leakage whereas with two sensors (phase reference and 
clock reference) we have the best acquisition possible because we don't have leakage anymore. So, the benefit 
introduce by this is that I reduce leakage and I know that physically all the average that we are making are 
referring to the same place, and this for sure is another improvement. Of course, when we do this synchronous 
acquisition, we cannot apply the window because it's absolutely useless since we don’t have any leakage at 
all.  
Once we have the signal, we can refer to a specific point of the rotor. If we know where the signal start, we 
also know what the angle between the reference point and the mass that is unbalancing the rotor is. If we 
know where it is, we can put a counter balance mass on the opposite side. So, the position in which we put 
this mass depends of where it occurs whereas the value of the mass depends on the amplitude of the signal.  
In case of synchronous acquisition if there is a lower frequency with respect to one revolution of the rotor, we 
observe leakage; so, in case of a rotated machine we have leakage it could be a symptom of this fact. What is 
the highest frequency I can get from this analysis? It will depend on how many samples I have inside my cycle. 
The higher the number of teeth, the better the resolution. But the higher number of teeth, the faster the 
conversion must go. We have some technological issues that we must take into account. 
With this technique of acquisition, we remove most of the limitation of the FFT. Actually, in real world we 
don't use teeth wheel, but we use encoder that are based on optical properties and they are cheaper.  
 

Power spectral density 
If the frequency resolution ∆𝑓 is small, we have a high acquisition time 𝑇 and the energy is spread out to a 
bigger number of bands. So, many times we could have very different spectrum depending on the choice of 
the acquisition time 𝑇. In order to avoid this, the ratio between the autospectrum 𝑆𝐴𝐴 of the signal and the 
frequency resolution is computed. The autospectrum 𝑆𝐴𝐴 is an indicator of the energy of the signal and it’s 
usually used to compute other quantities. The autospectrum can be computed as the product between a 
complex vector and the conjugate of the complex vector (we have already said that each acquisition of the 
signal is a complex vector). So, the ratio between the autospectrum 𝑆𝐴𝐴 of the signal and the frequency 
resolution defines the density of energy: 

𝑃𝑆𝐷 =
𝑆𝐴𝐴

∆𝑓
=

𝐴 ∙ 𝐴∗

∆𝑓
 

 
This process of normalising the spectrum with respect to the frequency resolution is called power spectral 
density (PSD) and it’s usually done in order to obtain results independent from the frequency resolution ∆𝑓. 
By doing this, all the acquisition with different resolutions will be with the same modulus. Usually this 
technique is used when the spectrum is continuous.  
 

 
Laboratory: computing the autospectrum as the product between the vector and its conjugate it’s like 
computing the absolute value of the signal, let’s try to understand why: 
 

𝐴 = 𝑎 + 𝑖𝑏 
 

𝐴∗ = 𝑎 − 𝑖𝑏 
 

𝑆𝐴𝐴 =  𝐴 ∙ 𝐴∗ = (𝑎 + 𝑖𝑏) ∙ (𝑎 − 𝑖𝑏) = 𝑎2 + 𝑏2 = (√𝑎2 + 𝑏2)
2

= |𝑧|2 

 

 


