Giustificare le risposte e scrivere in modo chiaro e leggibile. Sostituire i valori numerici solo alla fine, dopo aver ricavato le espressioni letterali. Indicare nome e cognome (in stampatello) e matricola su ogni foglio.

Elettrostatica e Magnetostatica

1. Alcune particelle (massa \(m \), carica \(q > 0 \)) inizialmente ferme vengono accelerate da una differenza di potenziale \(V > 0 \). Poi entrano in una regione in cui vi è un campo magnetico uniforme \(B \), ortogonale alla loro traiettoria iniziale, diretto come in figura. Dopo avere percorso una semicirconferenza le particelle escono dalla regione con il campo magnetico ad una distanza \(D \) dal punto di ingresso.
 a) Determinare la velocità delle particelle all’ingresso e all’uscita della regione in cui è presente campo magnetico.
 b) Ricavare l’espressione della distanza \(D \).
 c) Indicare in che modo l’apparato va modificato per funzionare con particelle cariche negativamente.

2. Un sistema è costituito da due cariche elettriche puntiformi \(q_1 \) e \(q_2 \) poste a distanza \(d \).
 a) Dare l’espressione vettoriale della forza elettrica agenti su una carica \(q_3 \) posta in un generico punto del segmento congiungente le due cariche.
 b) Determinare il punto di tale segmento in cui la forza si annulla, nell’ipotesi \(q_1 = 9q_2 \). Stabilire se questo rappresenta un punto di equilibrio stabile o instabile per \(q_3 \).
 c) Determinare l’energia potenziale elettrica della carica \(q_3 \) posta in questo punto.

3. Si è visto sperimentalmente che, mettendo in contatto una sfera isolata con la carica \(Q \) ed una sfera ad essa uguale ed inizialmente scarica, la carica della prima sfera si dimezza. Lo stesso tipo di fenomeno può essere osservato tenendo molto distanti le due sfere e collegandole con un filo conduttore.
 a) Si dica cosa succederebbe in quest’ultimo caso se si collegasse la prima sfera con una seconda di raggio doppio.
 b) Sia \(C_p = 15 \times 10^{-12} \) F la capacità della gabbia di Faraday, assimilabile ad un condensatore cilindrico. L’armatura esterna è posta a terra. Determinare la carica totale presente sulle sfere di raggio minore supponendo che il trasferitore avesse prelevato 1/100 della carica presente sulla superficie di quest’ulima e che tale carica induca ai capi dell’elettrometro una differenza di potenziale pari a 25 V.
 c) Dire quale tensione misura l’elettrometro nel caso in cui invece di quella esterna venga messa a terra l’armatura interna.

4. Una spira quadrata indeformabile di lato \(L = 5 \) cm è percorsa da una corrente elettrica di intensità \(I_c = 4 \) A. Complanare con la spira e alla distanza \(d = 20 \) cm da uno dei suoi lati, un filo rettilineo ed infinitamente esteso (anch’esso indeformabile) è percorso da una corrente elettrica di intensità pari a \(I_t = 10 \) A.
 a) Calcolare la risultante delle forze agenti sulla spira.
 b) Con i versi delle correnti indicati in figura, la spira viene attratta o respinta dal filo?
 c) Calcolare la risultante delle forze agenti sul filo.
 \((\mu_0 = 4 \pi \times 10^{-7} \text{ Wb}^2 \cdot \text{m}^{-1} \cdot \text{A}^{-2}) \)
Esercizio 1

a) Applicando il principio di conservazione dell’energia delle particelle:

\[E_k^i + E_p^i = E_k^f + E_p^f \]

si ottiene

\[\Delta E_k = -\Delta E_p = qV . \]

All’istante iniziale le particelle cariche hanno energia cinetica \(E_k^i = 0 \), da cui si ricava che l’energia cinetica \(E_k^f \) di ogni particella carica che raggiunge con velocità \(v \) la regione in cui è presente campo magnetico vale:

\[E_k^f = qV = \frac{1}{2} mv^2 , \]

\[v = \sqrt{\frac{2qV}{m}} . \]

Nella regione in cui è presente campo magnetico, essendo \(B \) perpendicolare alla velocità, il moto delle particelle è circolare uniforme, con accelerazione centripeta \(a_{cp} \) costante ottenuta dall’espressione della forza di Lorentz:

\[F = ma_{cp} = qvB . \]

La forza di Lorentz non compie lavoro sulla particella, quindi non ne modifica l’energia cinetica e il modulo della velocità.

b) L’accelerazione centripeta di un corpo in moto circolare uniforme è legata al raggio \(R \) dell’orbita:

\[a_{cp} = \frac{v^2}{R} = \frac{2qV}{mR} \]

per cui si ottiene:
c) Per far compiere a particelle cariche negativamente la stessa traiettoria indicata nella figura dell’esercizio bisogna utilizzare una differenza di potenziale V negativa e un campo magnetico B entrante nel piano del foglio.

\[2R = D = \frac{4V}{vB} = \frac{\sqrt{8V}}{B} \frac{m}{q}. \]
Esercizio 2

a) Sia X l’asse che ha per direzione quella della retta che unisce le due cariche. La coordinata x indichi la posizione della carica q_3. La carica q_1 si trovi nell’origine di X, mentre la carica q_2 si trovi nel punto di coordinata $x = d$. La forza totale che agisce su q_3 è la somma vettoriale delle forze di Coulomb dovute all’interazione elettrostatica di q_3 con q_1 e q_2, considerate singolarmente. Tale forza ha componente non nulla solo nella direzione X. Tale componente F_X ha la seguente espressione (valida in modulo e segno indipendentemente dal segno delle cariche):

$$F_X = \frac{1}{4\pi \varepsilon_0} \left[\frac{q_1q_3}{x^2} - \frac{q_2q_3}{(x-d)^2} \right].$$

b) Il punto \bar{x} in cui la forza si annulla è dato da:

$$F_X = 0 \Rightarrow \frac{q_1}{\bar{x}^2} = \frac{q_2}{(\bar{x}-d)^2} \Rightarrow \bar{x} = \frac{3}{4}d \text{ oppure } \bar{x} = \frac{3}{2}d.$$

La seconda soluzione corrisponde ad una posizione che non si trova sul segmento che congiunge le cariche q_1 e q_2 e va quindi scartata poiché in quel punto l’espressione di F_X di cui al punto a) non è più valida. In \bar{x} la carica q_3, vincolata a muoversi lungo il segmento congiungente q_1 e q_2, si trova in un punto di equilibrio stabile quando q_1, q_2 e q_3 hanno lo stesso segno, mentre l’equilibrio è instabile quando q_1, q_2 hanno segno opposto a q_3. Questo perché nel primo caso per ogni piccolo spostamento dalla posizione di equilibrio la forza totale tende a riportare la carica in \bar{x}, mentre nel secondo ad allontanarla ulteriormente; essendo la forza elettrostatica conservativa, ciò corrisponde al fatto che il punto \bar{x} è un punto di minimo relativo dell’energia potenziale nel primo caso e di massimo relativo nel secondo.

c) L’energia potenziale elettrica di q_3 posta nel punto di coordinata \bar{x} è la somma delle energie potenziali dovute all’interazione con le cariche q_1 e q_2 prese singolarmente. L’espressione dell’energia potenziale E_p di q_3 è quindi pari a (indipendentemente dal segno delle cariche):

$$E_p = \frac{1}{4\pi \varepsilon_0} \left[\frac{q_1q_3}{|\bar{x}|} + \frac{q_2q_3}{|\bar{x}-d|} \right] = \frac{4}{\pi \varepsilon_0} \frac{q_2q_3}{d}.$$
Esercizio 3

a) Due sfere sufficientemente distanti esercitano effetti di mutua induzione trascurabili. Quindi le due sfere si portano ad un potenziale pari rispettivamente a:

\[V_1 = \frac{1}{4\pi \varepsilon_0} \frac{Q_1}{R_1}, \]
\[V_2 = \frac{1}{4\pi \varepsilon_0} \frac{Q_2}{R_2}, \]

con \(Q \) pari alla carica e \(R \) pari al raggio della sfera. Collegando le due sfere con un filo conduttore, si impone la condizione \(V_1 = V_2 \), da cui si ottiene:

\[\frac{Q_1}{R_1} = \frac{Q_2}{R_2}. \]

Da \(R_1 = 2R_2 \) si ottiene \(Q_1 = 2Q_2 \).

b) Sia \(q \) la carica prelevata dal trasferitore. Sapendo che \(100q = Q_2 \) e che \(V_{elettr.} = 25 \, V = q/C_F \), si ricava

\[Q_2 = 3.75 \times 10^{-8} \, C. \]

c) Mettendo a massa l’armatura interna della gabbia di Faraday si scherma l’armatura esterna dalla carica contenuta all’interno della gabbia. Pertanto, l’elettrometro misurerebbe una differenza di potenziale nulla fra le due armature.
Esercizio 4

a) Per simmetria, le linee di forza del campo magnetico B generato dal filo rettilineo sono delle circonferenze con centro sul filo stesso e giacenti in piani ad esso perpendicolari. Applicando il teorema della circuitazione si ricava che il modulo B del campo magnetico generato dal filo ha il seguente valore:

$$B = \frac{\mu_0 I_i}{2\pi r},$$

dove r è la distanza dal filo. Il campo magnetico B, in corrispondenza della spira, è diretto dall’osservatore verso la pagina ed è perpendicolare al piano della spira stessa.

I due lati della spira perpendicolari al filo sono percorsi da correnti di verso opposto. Le forze applicate a ciascuno di essi hanno stesso modulo, sono parallele al filo rettilineo e hanno versi opposti l’una rispetto all’altra. La loro risultante è quindi nulla.

La forza esercitata su ciascuno dei due lati della spira paralleli al filo vale:

$$F = I_i \mathbf{L} \times \mathbf{B},$$

ovvero

$$F = L \frac{\mu_0 I_i I_i}{2\pi d} \quad \text{per il lato più vicino al filo,}$$

$$F = L \frac{\mu_0 I_i I_i}{2\pi (d + L)} \quad \text{per il lato più lontano dal filo.}$$

Tali forze sono perpendicolari al filo. Nei due lati della spira la corrente ha verso opposto. La risultante delle forze agenti sulla spira è diretta verso il filo e ha modulo pari a:

$$F_{\text{tot}} = L \frac{\mu_0 I_i I_i}{2\pi} \left(\frac{1}{d} - \frac{1}{d + L} \right) = 4 \times 10^{-7} \text{ N}.$$
b) Con i versi delle correnti indicati in figura il lato della spira viene attratto dal filo (correnti concordi), mentre quello più lontano ne viene respinto. Siccome la forza è inversamente proporzionale alla distanza, la spira viene attratta dal filo.

c) Per il principio di azione e reazione, la forza che la spira esercita sul filo è uguale in modulo e direzione ma opposta in verso a quella che il filo esercita sulla spira.