1° CASO

C = 0.4 %.

1. T_1: 100% FASE γ in cristalli \rightarrow 100% AUSTENITE

Alla temperatura T_2 cominciano a formarsi i primi cristalli di fase α:

2. T_2: 2 FASI \leftarrow 100% FASE γ in cristalli \rightarrow 100% AUSTENITE

Tracce di fase α in cristalli \rightarrow Tracce di ferrite

Quindi a T_2 ho 2 FASI e 2 COSTITUENTI STRUTTURALI:

L'insieme dei cristalli di fase γ formano l'AUSTENITE mentre i primi cristalli di fase α formano le prime tracce del nuovo costituente strutturale ovvero la FERRITE. Dopo T_2 fino a poco prima della trasformazione a 727°C (EUTETTODICA) si ha, per nucleazione ed accrescimento dei cristalli primari, l'aumento della quantità...
di fase α. Andiamo quindi a vedere la situazione poco prima della trasformazione EUTETTODICA:

A 727°C: 2 FASI

FASE Y α α α α α α α α

\[\frac{0.4}{0.77} \cdot 100 = 51.9\% \]

FASE α α α α α α α α

\[\frac{0.77 - 0.4}{0.77} \cdot 100 = 48.1\% \]

2 COSTITUENTI STRUTTURALI

AUSTENITE 51.9\%

FERRITE 46.1\%

A 727°C la fase γ subisce la trasformazione EUTETTODICA, mentre i cristalli di fase α passano inalterati. In particolare i cristalli di fase γ si trasformano in cristalli lamellari, ovvero in cristalli dentro i quali sono presenti lamelle alternate di fase α e fase Fe₃C (carburo di ferro).

Quindi a 727°C avremo:

\[\frac{0.4}{6.69} \cdot 100 = 6.0\% \]

2 FASI

FASE Fe₃C lamelle

48.1\% cristalli

FASE α = 94.1\%

45.9\% lamelle

48.1\% FERRITE

2 COSTITUENTI STRUTTURALI

(45.9 + 6)\% = 51.9\% PERLITE

Avendo situazione è anche quella che si ha a Tₐ (temperatura ambiente).
E' un caso molto semplice. Infatti da
T_{1} fino a 727°C non succede niente; poi a 727°C la fase Y subisce la
trasformazione EUTETTODICA generando le cristalli lamellari
zi che rimanano inalterati fino a T_{1}:

\[T_{1}: \text{1 fase } 100\% \text{ Y cristalli} \rightarrow 100\% \text{ AUSTENITE} \]

\[T_{27}^{+}: \text{come a } T_{1} \]

\[\begin{align*}
2 \text{ FASI} & \left\{
\begin{array}{l}
\text{Fe}_{3} \text{C lamelle } \frac{0.77}{6.69} \cdot 100 = 11.5\% \\
\text{Y lamelle } \frac{6.69 - 0.77}{6.69} \cdot 100 = 88.5\%
\end{array}
\end{align*} \]

\[727^-: \text{1 COSTITUENTE STRUTTURALE } 100\% \text{ PERLITE} \]

\[T_{27}^+: \text{come a } 727^- \]
3° CASO

\[C = 1\% \]

\[T_1: \text{ 1 FASE } 100\% \text{ } \delta \text{ in cristalli} \quad \rightarrow \quad 100\% \text{ AUSTENITE} \]

\[T_2: \begin{cases} 2 \text{ FASI} \\ \overset{100\%}{\text{Fase } \delta \text{ in cristalli}} \\ 2 \text{ COLTI DOENTI STRUTTURALI} \end{cases} \]

\[\overset{100\%}{\text{AUSTENITE}} \quad \overset{\text{(II)}}{\text{TRACCE DI CEMENTITE SECONDARIA, COSTITUIRE DELLE PLACCHETTE DI } \text{Fe}_3\text{C}} \]

Lo smiscellamento di placchette di \text{Fe}_3\text{C} da parte dei cristalli di \(\delta \) continua fino a quando arriviamo a 727°C. A tale temperatura la fase \(\delta \) subisce la trasformazione EUTETOIDICA, mentre le placchette di \text{Fe}_3\text{C} possono inalterare. Andiamo a vedere la nitrazione poco prima della trasformazione EUTETOIDICA:
A 727°C la sola fase γ' subisce la trasformazione eutettodica. I cristalli di fase γ' si trasformano in cristalli lamellati in cui sono presenti lamelle di fase α e lamelle di fase Fe₃C; tali cristalli lamellati costituiscono la perlite.

\[
\begin{align*}
2 \text{ fasi} & \left\langle \begin{array}{c}
\text{Fe₃C plughe} \\
\text{lamelle} \\
\end{array} \right. \\
\text{727°C} & \left\langle \begin{array}{c}
\alpha \\
\gamma' \\
\end{array} \right. \\
\text{fece} & \left\langle \begin{array}{c}
3.9\% \text{ CEMENTITE II} \\
96.1\% \text{ AUSTENITE} \\
\end{array} \right.
\end{align*}
\]

Tale situazione rimane invariata fino a temperature ambiente.

Vediamo la situazione a 1/3 del tempo di raffreddo a 727°C:

\[
\begin{align*}
\text{Fe₃C} & \, 85 : 1 \\
11.1 & \, x : 1/3 \\
3.9 & \, 15 \, \text{Fe₃C} \\
x & = 28.3 \\
11.1 : 1 & = y : 1/3 \\
y & = 3.7
\end{align*}
\]

Quindi a 1/3 del tempo d'assesto:

- 3.9% Fe₃C plughe
- 3.7% Fe₃C lamelle
- 28.3% α lamelle
- 66.1% γ' cristalli
- 3.9% CEMENTITE II
- 32% PERLITE
- 66.1% AUSTENITE
T_1: 1 FASE 100% LIQUIDUS

T_2: 2 FASI < TRACCE γ cristalli \rightarrow AUSTENITE

A 1148 avviene la trasformazione eutettica, ma non con il solito meccanismo, avviene trasformazione di tutto e solo il liquido in cristalli lamellari; e passaggio inalterato dei cristalli γ presenti a 1148. Questi ultimi passeranno sempre inalterati, ma il liquido si trasformerà in una "matrice" di γ con innesi GLOBULI di Fe_3C, ed insieme di questa matrice di γ e dei globuli prende il nome di "EDEBUTE".

Analizziamo i singoli passaggi.
Come si può vedere dal diagramma a 1160°C inizia anche lo smiscelamento di Fe₃C da parte di α.

L'Fe₃C smiscelato dai γ cristalli dà vita a placchette ai bordi dei piani e quindi alla cedentità II, mentre l'Fe₃C smiscelato la γ matrice non farà altro che ingrossare i globuli di Fe₃C già esistenti. Avendo:

727°: 2 FASI < α 62.33% cristalli + matrice
Fe₃C 39.67% placchette + globuli

Per il calcolo dei costituenti strutturali è necessario incorporare i contributi dei due tipi di smiscelamento riscontrato.
Si deve ricorrere alla lega ausiliaria (aux 1) ovvero alla lega con C = 2.11% per la quale:

LEGA AUX 1

148°: 1 FASE 100% cristalli

Fe₃C 77.36% cristalli

727°: 2 FASI

Fe₃C 22.64% placchette

Opezando come visto nei diagrammi semplici:

100: 22.64 = 59.36 : x

x = 13.43

quanta Fe₃C in placchette per la mia lega in esame.

Quindi per la mia lega con 3% di C ho:

Fe₃C 37.67% < 13.43% placch.

727°: 2 FASI

Fe₃C 62.33% < (59.36 - 13.43) = 45.93% cristalli

3 COSTITUENTI STRUTTURALI

13.43% CERDENTITE II

45.93% AUSTENITE

(16.4 + 24.24) = 60.64% LEDEBURITE
A 727° tutta e sola la fase γ subisce la transformazione eutettoidica. Vediamo ora su quale successivamente vengono e poi giustificheremo il perché:

LEDEBURITE \[\left\{ \begin{align*} 24.24\% \text{ Fe}_3 \text{C} & \quad \overset{727°}{\rightarrow} 24.24\% \text{ Fe}_3 \text{C} \\ 16.41\% \gamma \text{ austit.} & \quad \overset{727°}{\rightarrow} \left\{ \begin{align*} 14.55\% \text{ lamelle} \\ \text{Fe}_3 1.85\% \text{ lamelle} \end{align*} \right. \end{align*} \]

AOSTENITE — 45.93% γ austit. \[\overset{727°}{\rightarrow} \begin{align*} \alpha & \quad 40.76 \text{ lamelle} \\ \text{Fe}_3 \text{C} 5.2 \text{ lamelle} \end{align*} \]

CEMENTITE II — \text{Fe}_3 \text{C} 13.48 \[\overset{727°}{\rightarrow} 13.48 \text{ Fe}_3 \text{C} \]

placchette.

RIASSUNENDO

727°: 2 FASI \[\left\{ \begin{align*} \text{Fe}_3 \text{C} & \quad 44.85 \\ \alpha & \quad 55.15 \end{align*} \]

\[\begin{align*} 24.24 \text{ globuli} \\ 1.68 \text{ lamelle LEDEBURITE} \\ 5.3 \text{ lamelle PRLITE} \\ 13.48 \text{ placchette} \\ 14.64 \text{ lamelle LEDEBURITE} \\ 40.64 \text{ lamelle PRLITE} \end{align*} \]

Per giungere a questi risultati abbiamo dovuto fare ricorso ad una seconda fase ausititica ovvero \textit{Aux 2}.
Tale legge si rivolge per calcolare i contributi della trasformazione eutettoidica subita da \(\gamma \) cristalli e \(\gamma \) matrice. Vediamo come. Per la legge Aux 2 si verifica quanto segue:

\[
\begin{align*}
727^+ & : 1 \text{ FASE } 100\% \gamma \text{ cristalli} \\
 & \times 88.50\% \text{ lamelle} \\
727^- & : 2 \text{ FASI} < \text{ Fe}_3\text{C} 11.50\% \text{ lamelle}
\end{align*}
\]

Tali valori vengono messi in proporzione con quelli della nostra legge in esame ovvero:

\[
\begin{align*}
100 & : 88.50 = 45.93 : x \\
 & \quad \xrightarrow{x = 60.64}
\end{align*}
\]

Per differenza otteniamo anche le lamelle di \(\text{Fe}_3\text{C} \) della perlite ovvero:

\[
45.93 - 60.64 = 5.3
\]

\[
\begin{align*}
\text{QUANTITA'} \text{ IN LAMELLE DELLA PERLITE} \\
\text{QUANTITA'} \text{ DI Fe}_3\text{C LAMELLE DELLA PERLITE}
\end{align*}
\]

E' immediato il calcolo della \(\text{Fe}_3\text{C} \) lamellare nella \(\gamma \) debole trasformata infatti:

\[
44.85 - 24.24 - 5.3 - 13.43 = 1.88\%
\]

\[
\begin{align*}
\text{Fe}_3\text{C TOTALE} & \text{ in globuli} \\
\text{Fe}_3\text{C} & \text{ in lamelle della} \\
\text{lamella della} & \text{perlite} \\
\text{PERLITE} & \text{in placchette} \\
\end{align*}
\]

(10)
Similmente si ottiene il 14.51 di α in lamelle della LEDEB. TRASF.

La situazione rimane invariata fino a T_2.

Quindi a temperatura ambiente:

1. 40.64 lamelle PERLITE
2. 24.24 globuli LEDEB. TRASF
3. 14.51 lamelle PERLITE
4. 4.88 lamelle LEDEB. TRASF
5. 5.3 lamelle PERLITE
6. 13.43 placchette

T_2:

3 costituenti strutturali

13.43 CEMENTITE II

14.51 lamelle LEDEB. TRASF

α 55.15%
T_1: 1 fase 100% liquidi

T_2: 2 fasi < 100% liquidi

1148$^+$: 2 fasi < 70.72% liquidi

1148$: 2 fasi < 36.89% ferro e 63.11% Fe$_3$C < 29.28 placche.

1148$: 2 fasi < 29.28 cementite I \\ 70.72 ledeburite
A 1148 ha iniziato lo scioglimento da parte della f, che andò a formare i globuli di Fe₃C:

\[
\begin{align*}
\text{727 } \quad & \quad \begin{cases}
\text{2 fasi} \quad & \quad 28.55\% \text{ Matrix} \\
\text{2 cost. strutt.} \quad & \quad 29.28\% \text{ Phasch.} \\
& \quad 71.45\% \text{ Fe₃C} \\
& \quad 42.17\% \text{ Globuli} \\
& \quad 70.72\% \text{ CEDEBURITE}
\end{cases}
\end{align*}
\]

A 727° la fase f subisce la transizione eulitoida:

\[
\begin{align*}
\text{727 } \quad & \quad \begin{cases}
\text{2 fasi} \quad & \quad 25.26\% \text{ Lamelle} \\
\text{2 componenti strutturali} \quad & \quad 29.28\% \text{ Phasch.} \\
& \quad 74.74\% \text{ Fe₃C} \\
& \quad 42.17\% \text{ Globuli} \\
& \quad 70.72\% \text{ CEDEBURITE TRASFORMATA}
\end{cases}
\end{align*}
\]

Tale situazione rimase invariata fino a Ta.

Si noti che la cedeburite I formata si riduce ad alta temperatura e giunge inalterata fino a Ta.